Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available November 1, 2026
-
Abstract This paper presents a fast and robust numerical method for reconstructing point-like sources in the time-harmonic Maxwell’s equations given Cauchy data at a fixed frequency. This is an electromagnetic inverse source problem with broad applications, such as antenna synthesis and design, medical imaging, and pollution source tracing. We introduce new imaging functions and a computational algorithm to determine the number of point sources, their locations, and associated moment vectors, even when these vectors have notably different magnitudes. The number of sources and locations are estimated using significant peaks of the imaging functions, and the moment vectors are computed via explicitly simple formulas. The theoretical analysis and stability of the imaging functions are investigated, where the main challenge lies in analyzing the behavior of the dot products between the columns of the imaginary part of the Green’s tensor and the unknown moment vectors. Additionally, we extend our method to reconstruct small-volume sources using an asymptotic expansion of their radiated electric field. We provide numerical examples in three dimensions to demonstrate the performance of our method.more » « less
-
We consider the inverse problem of determining the geometry of penetrable objects from scattering data generated by one incident wave at a fixed frequency. We first study an orthogonality sampling type method which is fast, simple to implement, and robust against noise in the data. This sampling method has a new imaging functional that is applicable to data measured in near field or far field regions. The resolution analysis of the imaging functional is analyzed where the explicit decay rate of the functional is established. A connection with the orthogonality sampling method by Potthast is also studied. The sampling method is then combined with a deep neural network to solve the inverse scattering problem. This combined method can be understood as a network using the image computed by the sampling method for the first layer and followed by the U-net architecture for the rest of the layers. The fast computation and the knowledge from the results of the sampling method help speed up the training of the network. The combination leads to a significant improvement in the reconstruction results initially obtained by the sampling method. The combined method is also able to invert some limited aperture experimental data without any additional transfer training.more » « less
-
Abstract This paper is concerned with imaging of 3D scattering objects with experimental data from the Fresnel database. The first goal of the paper is to investigate a modified version of the orthogonality sampling method (OSM) by Harris and Nguyen [2020 SIAM J. Sci. Comput. 42 B72–737] for the imaging problem. The advantage of the modified OSM over its original version lies in its applicability to more types of polarization vectors associated with the electromagnetic scattering data. We analyze the modified OSM using the factorization analysis for the far field operator and the Funk–Hecke formula. The second goal is to verify the performance of the modified OSM, the OSM, and the classical factorization method for the 3D Fresnel database. The modified OSM we propose is able to invert the sparse and limited-aperture real data in a fast, simple, and efficient way. It is also shown in the real data verification that the modified OSM performs better than its original version and the factorization method.more » « less
An official website of the United States government

Full Text Available